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Models of intermediate spectral statistics
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Based on numerical results it is conjectured that the spectral statistics of certain pseudointegrable billiards
have a special form similar to that of the Anderson model at the transition point. A simple theoretical model
where such statistics can be obtained analytically is briefly discussed. A few models with similar behavior are
considered. In particular, we analytically found the eigenvalue statistics of a Poisson-distributed matrix per-
turbed by a rank one matrix, which is a good model for spectral statistics of a singular billiard.
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A major area of interest in the theory of quantum chao
the relation between the classical dynamics of a sys
and the spectral statistics of its quantum counterpart. I
grable dynamics generally leads to uncorrelated energy
els ~Poisson statistics! and completely chaotic dynamics co
responds to the Wigner statistics of one of the stand
random matrix ensembles~RME!. There is a lot of numerica
evidence~see, e.g.,@1#! and some analytical arguments@2# in
favor of these conjectures.

These statistics are also supposed to be valid in the li
ing regimes@far from the metal-insulator transition~MIT !
point# of the Anderson model in three dimensions~see, e.g.,
@3#!, while there are strong indications that the level statis
exactly at the MIT point constitute a third universal e
semble@4# ~connected with fractal nature of wave functio
@5#! whose main features are~i! the existence of level repul
sion ~as in RME!, and~ii ! slow ~approximately exponential!
fall-off of the nearest-neighbor distribution at large distanc
@the opposite of exp(2s2) behavior in RME#.

The purpose of this Rapid Communication is to point o
that a similar phenomenon also exists for certain dynam
systems. First we present numerical results that demons
that the spectral statistics of pseudointegrable billiards h
many similiarities with the critical statistics of the Anderso
model in the MIT point. We also observe that statistic
properties of a few pseudointegrable billiards are quite w
described by a simple theoretical model of intermediate
tistics which we called the semi-Poisson statistics. A f
other dynamical models~the Kepler billiard and the rough
billiard! where the analogous behavior has been observed
shortly discussed. Finally, we consider two models~of inde-
pendent interest! where the existence of intermediate stat
tics can be proved analytically.

The above-mentioned conjectures about spectral stati
are applied only to the limiting cases of classical dynam
namely completely integrable or completely chaotic on
But there are models which are neither integrable nor c
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otic. The simplest example is given by plane polygonal b
liards with all angles equal rational multiples ofp ~called
pseudointegrable systems! where all trajectories belong to
surface of genus larger than one~see @6# and references
therein!.

We have performed extensive numerical calculations
plane billiards in the shape of right triangles with one an
equalsp/n and Dirichlet boundary conditions. For alln
55,7,...,30 typically 20 000 energy levels have been com
puted with a precision better than 1022 of the mean level
density. In Fig. 1 we present the cumulative spacing dis
bution ~integral of nearest-neighbor distribution! for low-
energy part of the spectrum for the billiard withn55. The
cumulative spacing distributions for Poisson statist
NP(s)512exp(2s) ~dotted line!, for the Wigner surmise
NW(s)512exp(2ps2/4) ~dashed line!, and for a new statis-

FIG. 1. Cumulative spacing distribution for four slices of 250
consecutive energy levels for a right triangular billiard withp/5
angle~energy increasing from bottom to top!. Inset: the two-point
correlation function from all 10 000 levels.
R1315 ©1999 The American Physical Society
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tics which we call the semi-Poisson statistics~solid line! @7#,

psp~s!54se22s, Nsp~s!512~2s11!e22s ~1!

are also plotted for each slice.
The semi-Poisson statistics are a particular case of

short-range plasma model~SRPM! with interaction only be-
tween closest neighbors discussed later where all correla
functions can be computed in the closed form. In the inse
Fig. 1 we show the two-point correlation function comput
from the first 10 000 levels of the above triangular billia
together with the analytical result for this quantity for th
semi-Poisson statistics

R2~s!512e24s. ~2!

Figure 1 indicates a transition from a spacing distribut
close to the Wigner surmise for the bottom of the spectr
to a distribution which~i! seems to be stable with respect
increasing energy, and~ii ! is close to the semi-Poisson di
tribution given by Eq.~1!.

In Fig. 2 we plot the difference between the cumulati
spacing distribution for all 20 000 levels except the first 50
for triangular billiards with differentn and the semi-Poisso
distribution ~1!. On analyzing these and other results w
come to the following conclusions:

~i! Spectral statistics of the above billiards depend~in the
first approximation! on one parameterq, which we propose
to call arithmetical genus. For oddn it equals the usual geo
metrical genusg of a surface associated with classical m
tion on pseudointegrable billiards@6# but for even n, q
5f(n)/2 wheref(n) is the Euler function. The four visible
groups of lines in Fig. 2~from the top to the bottom! corre-
spond respectively to triangles withq52 (n55,8,10,12),
with q53 (n57,14,18), withq54 (n59,16,20,24,30), and
all the rest.

~ii ! The spectral statistics for triangles withq52
(n55,8,10,12) are quite well described~better than 1022! by
the semi-Poisson distribution~1!. We have checked that eve

FIG. 2. Difference between the cumulative spacing distribut
for triangular billiards withn55,7,...,30 and thesemi-Poisson one
Solid line, this quantity for the GOE distribution. For details, s
text.
e

on
f

0

-

the next-to-nearest distribution for these cases is close to
one predicted in SRPM with closest neighbors interact
~the semi-Poisson statistics!

p~2,s!5
8

3
s3 exp~22x!. ~3!

~iii ! Numerical data suggest that with increasingq spec-
tral statistics tends to a certain limiting distribution that
close to the one of SRPM with three nearest-neighbors in
action.

We stress that~a! these statements are based mainly
numerical results and at present they should be considere
conjectures,~b! triangular billiards in the shape of right tri
angles with anglep/n belong to the so-called Veech poly
gons @8#, which have an interesting mathematical structu
and may not be generic.

To introduce SRPM~which serves us as the simplest an
lytical model of intermediate statistics! we remind one that
the joint probability distribution of eigenvalues of RME ca
be written as the probability distribution of a one
dimensional gas of classical particles interacting pairw
through the repulsive potentialV(x)52 loguxu,

PN~x1 ,...,xN!5ZN
21 expS 2b(

i , j
V~xj2xi ! D , ~4!

whereZN is the partition function and the inverse temper
ture is fixed tob51, 2, and 4 for orthogonal, unitary, an
symplectic ensembles, respectively.

Now let us considerN12 particles with positionsxj in an
interval of sizeL and take 05x0,x1,¯,xN,xN115L.
We choose their joint probability distribution as in Eq.~4!,
but with the interaction restricted only to a finite number
nearest-neighbor particles. Instead of the sum over alli , j
we shall sum only over particles with 0, j 2 i<h, whereh
is the number of interacting neighbors. In some sense
model belongs to a class of models with ‘‘screened’’ tw
body potential similar, e.g., to the Gaudin model@9#. An
important property of this model is that its statistical prop
ties can be computed analytically for any form of two-bo
potential V(x) and anyh @10,11#. For the natural choice
V(x)52 loguxu andh51 ~it is this model we called the semi
Poisson statistics! one finds that in the largeN limit the
distribution ofn nearest neighbors is

P~n,s!5
~b11!n~b11!

G„n~b11!…
sn~b11!21e2~b11!s, ~5!

which for b51 andn51,2 give Eqs.~1! and ~3!. The two-
point correlation function is given by Eq.~2! and the number
variance by

S2~L !5
L

2
1

1

8
~12e24L!. ~6!

The model with 2 loguxu interaction between neares
neighbors is extremely simple, has no adjustable parame
~excepth!, and~i! it exhibits level repulsion as for standar
random matrix ensembles:p(s)→sb as s→0, ~ii ! p(s) de-
creases as exp(2Ls) for large s with L5bh11, ~iii !

n
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S2(L)→xL whenL→` with x51/L @23#. It is this type of
feature that one requires for the critical statistics of
Anderson model at the MIT point~see@12# and references
therein!.

We found several other dynamical models where interm
diate spectral statistics well described by the above se
Poisson distribution have been observed. In these case
intermediate statistics are not the limiting distribution,
seems to be the case for pseudointegrable billiards, but ra
a transient phenomenon. The first model~which we call the
Kepler billiard! was proposed in@13# and consists of a rect
angular billiard with a Yukawa-type potential,

V~r !5l
e2kr

r
, ~7!

where r is the distance from a certain point inside t
rectangle~usually in the center!.

We have numerically computed 4000 energy levels of
Kepler billiard with sides a54 and b5p imposing
the boundary conditionsc(x1a,y)5exp(if1)c(x,y) and
c(x,y1b)5exp(if2)c(x,y) with f15(A521)p/2 and f2
51/4. The result forl58, k58 is presented in Fig. 3
Though with increasing energy the level statistic of this b
liard has to tend to the Poisson distribution@13#, for low
energies the nearest-neighbor distribution is quite close
the semi-Poisson distribution in Eq.~1!.

We have also considered the rough billiard discussed
@14#, which is a small deformation of a circular billiard. I
polar coordinates its boundary is defined by

r ~u!5r 0S 11 (
n52

N

@an cos~nu!1bn sin~nu!# D , ~8!

wherer 0 , an , andbn are constants. We chosean andbn at
random with uniform distribution in the interval@2c,c#.
The value of c has been fixed by the requirement th

FIG. 3. Cumulative nearest-neighbor distribution for four slic
of successive 1000 energy levels for the Kepler billiard. Ins
small-s behavior for the first slice.
e
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ur (u)2r 0u/r 0<0.05 for allu and thenr 0 has been calculated
from the condition that the surface of the resulting figu
equals 4p.

In Fig. 4 we present the result of a numerical calculati
of the first 500 energy levels divided into four slices, 1-20
100-300, 200-400 and 300-500, averaged over 40 config
tions ~in total, 20 000 eigenvalues!. In this case one observe
a transition from the Poisson distribution to the GOE dis
bution ~as it should be!, but in between there is an interval o
energy where the resulting distribution is quite close to
semi-Poisson one~1!. Intermediate statistics quite well de
scribed by Eqs.~1! and~2! were also observed in nonhydro
genic atoms in external fields@15# and in the three-
dimensional Anderson model with special bounda
conditions at the transition point@16#.

The above collection of numerical results suggests th
new type of spacing distribution, which in the simplest cas
is well approximated by Eq.~1!, has a general significance
The characteristic feature of this distribution is a linear le
repulsion and exponential falloff at large spacings. Thou
the degree of universality of this distribution is not yet cle
it is found for many systems.

The common origin of this kind of intermediate statisti
appears to be connected with the~multi!fractal character of
typical wave functions either in the coordinate space~as with
the Anderson model@5#! or in the reciprocal space~as it
seems to be the case for above-mentioned dynamical
tems!. The complete theory of such intermediate statistics
still to be developed. Though there exist a few standard m
els of crossover between the Poisson and RME statis
@17–19#, we have checked numerically that none of them
capable of detailed description of intermediate statistics
cussed in this paper. The main reason for it is related to
results of Ref.@20#, where it was proved that fractal prope
ties of wave functions quite naturally lead to~a! small cor-
relations between levels with different energies~simply be-
cause these wave functions ‘‘live’’ on different fractals! and
~b! strong correlations between levels with nearby energ

t:
FIG. 4. Same as in Fig. 3 but for the rough billiard. Inset: sma

s behavior for the second slice.
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This peculiar behavior of wave function overlap is com
pletely absent in the above-mentioned models but is inhe
in plasma models with screened Coulomb interaction~like
SRPM discussed above or the Gaudin model@9#!, which we
think are adequate for analytical description of intermedi
statistics.

Another class of models that has analogous features~but
without fractal properties and withS2/L→1! can be con-
structed as follows. Let us consider anN3N matrix of the
form Hmn5endmn1tmtn , where en are mutually indepen-
dent random variables uniformly distributed between2W
andW andtm is a fixed vector. EigenvaluesE of this matrix
obey the equation(n51

N r n /(E2en)51, where r n5utnu2.
The density of these eigenvalues can be transformed to
following form:

r~E!5E da

2p
e2 ia (

n51

N
r n

~E2en!2 )
m51

N

expS ia
r m

E2em
D .

As eachen is an independent random variable this expr
sion permits the explicit computation of the correlation fun
tions Rk(E1 ,...,Ek)5^r(E1)¯r(Ek)&, where^¯& denotes
the mean value over allen . We state here only the behavio
of the two-point correlation function whenr n5r in the limit
N→` at small e5E22E1 , R2(e)→(p)/2)e'2.72e,
98
tin

re
nt

e

he

-
-

which is different from the GOE predictionR2
GOE(e)

→(p2/6)e'1.64e.
The matrix model discussed above is closely related t

singular billiard proposed in@21#. The same method can als
be applied to the Bohr-Mottelson model@22#.

To summarize, we have demonstrated numerically tha
level spacing distribution, which is well approximated by E
~1!, occurs for quite different dynamical systems~at least in
certain energy ranges!, and thus seems to have a gene
character~connected probably with the fractal nature
eigenfunctions@5,12#!. This conjecture is supported by th
analogy between dynamical and disordered systems.
have also developed a one-dimensional gas model w
nearest-neighbor interaction that leads to Eqs.~1! and ~2!.
Finally, we have demonstrated analytically that certain m
trix models also lead to similar statistics.

Note added.When this paper had been completed we b
came aware that A. Pandey@23# had investigated the mode
equivalent to our SRPM in the framework of band rando
matrix theory and Brownian motion.
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