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Models of intermediate spectral statistics
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Based on numerical results it is conjectured that the spectral statistics of certain pseudointegrable billiards
have a special form similar to that of the Anderson model at the transition point. A simple theoretical model
where such statistics can be obtained analytically is briefly discussed. A few models with similar behavior are
considered. In particular, we analytically found the eigenvalue statistics of a Poisson-distributed matrix per-
turbed by a rank one matrix, which is a good model for spectral statistics of a singular billiard.
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PACS numbd(s): 05.45~a, 03.65.Sq, 05.46.a

A major area of interest in the theory of quantum chaos itic. The simplest example is given by plane polygonal bil-
the relation between the classical dynamics of a systerfiards with all angles equal rational multiples af (called
and the spectral statistics of its quantum counterpart. Intepseudointegrable systemshere all trajectories belong to a
grable dynamics generally leads to uncorrelated energy lewsurface of genus larger than orisee[6] and references
els (Poisson statistidsand completely chaotic dynamics cor- therein.
responds to the Wigner statistics of one of the standard We have performed extensive numerical calculations for
random matrix ensembléRME). There is a lot of numerical plane billiards in the shape of right triangles with one angle
evidence(see, e.g/[1]) and some analytical argumeni®y in  equals7/n and Dirichlet boundary conditions. For afi
favor of these conjectures. =5,7,..,30typically 20000 energy levels have been com-

These statistics are also supposed to be valid in the limitputed with a precision better than 10 of the mean level
ing regimes[far from the metal-insulator transitiotMIT) density. In Fig. 1 we present the cumulative spacing distri-
point] of the Anderson model in three dimensigisee, e.g., bution (integral of nearest-neighbor distributjofior low-
[3]), while there are strong indications that the level statisticeenergy part of the spectrum for the billiard with=5. The
exactly at the MIT point constitute a third universal en- cumulative spacing distributions for Poisson statistics
semble[4] (connected with fractal nature of wave functions Np(s)=1—exp(—s) (dotted ling, for the Wigner surmise
[5]) whose main features af® the existence of level repul- Ny/(s)=1—exp(—ws%4) (dashed ling and for a new statis-
sion (as in RMB, and(ii) slow (approximately exponentigl
fall-off of the nearest-neighbor distribution at large distances
[the opposite of exp{s®) behavior in RME. 1.8

The purpose of this Rapid Communication is to point out
that a similar phenomenon also exists for certain dynamical
systems. First we present numerical results that demonstrate
that the spectral statistics of pseudointegrable billiards have
many similiarities with the critical statistics of the Anderson
model in the MIT point. We also observe that statistical 1,
properties of a few pseudointegrable billiards are quite well
described by a simple theoretical model of intermediate sta-
tistics which we called the semi-Poisson statistics. A few
other dynamical model&the Kepler billiard and the rough
billiard) where the analogous behavior has been observed are .
shortly discussed. Finally, we consider two modeisinde- 0.6 I
pendent interestwhere the existence of intermediate statis-
tics can be proved analytically.

The above-mentioned conjectures about spectral statistics
are applied only to the limiting cases of classical dynamics,
namely completely integrable or completely chaotic ones. E
But there are models which are neither integrable nor cha- ¢ L

N(s)
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S
*Present address: Max-Planck-Institut fidernphysik, Heidel- FIG. 1. Cumulative spacing distribution for four slices of 2500
berg, Germany. consecutive energy levels for a right triangular billiard wittis
TUnite de Recherche des UniversiteParis 11 et Paris 6, assagie angle (energy increasing from bottom to tognset: the two-point
au CNRS. correlation function from all 10 000 levels.
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0.05 the next-to-nearest distribution for these cases is close to the

one predicted in SRPM with closest neighbors interaction
(the semi-Poisson statistics

0.00 &

8
p(2,s)= §s3 exp( — 2x). 3

(iii) Numerical data suggest that with increasmgpec-
tral statistics tends to a certain limiting distribution that is
close to the one of SRPM with three nearest-neighbors inter-
action.

We stress thata) these statements are based mainly on
L numerical results and at present they should be considered as
e conjectures(b) triangular billiards in the shape of right tri-

0 2 4 angles with angler/n belong to the so-called Veech poly-
€ gons|[8], which have an interesting mathematical structure

FIG. 2. Difference between the cumulative spacing distribution@nd may not be generic.

N(s)-Nsp(s)

-0.05

-0.10

for triangular billiards witn=5,7,...,30 and theemi-Poisson one. To introduce SRPMWh_iCh serves us as thg simplest ana-
Solid line, this quantity for the GOE distribution. For details, seelytical model of intermediate statisticsve remind one that
text. the joint probability distribution of eigenvalues of RME can

be written as the probability distribution of a one-

tics which we call the semi-Poisson statistisslid ling) [7], ~ dimensional gas of classical particles interacting pairwise
through the repulsive potenti®(x) = —log|x,

Psp(S)=4se %, Ngys)=1—(2s+1)e™®* (1)
PN(xl,...,xN)ZZNlex;{—BE V(xj—xi)), (4)
are also plotted for each slice. =

The semi-Poisson statistics are a particular case of th\‘fvhereZN
short-range plasma modeésRPM with interaction only be-
tween closest neighbors discussed later where all correlati
functions can be computed in the closed form. In the inset o
Fig. 1 we show the two-point correlation function computed
from the first 10 000 levels of the above triangular billiard
together with the analytical result for this quantity for the
semi-Poisson statistics

is the partition function and the inverse tempera-
ture is fixed toB=1, 2, and 4 for orthogonal, unitary, and
mplectic ensembles, respectively.
Now let us consideN+ 2 particles with positiong; in an
interval of sizeL and take G=Xy<x;<-: <Xy<Xn+1=L.
We choose their joint probability distribution as in Bd),
but with the interaction restricted only to a finite number of
nearest-neighbor particles. Instead of the sum over<a|l
we shall sum only over particles with<0j —i<h, whereh
Ry(s)=1—e"*. (2)  is the number of interacting neighbors. In some sense this
model belongs to a class of models with “screened” two-
Figure 1 indicates a transition from a spacing distributionbody potential similar, e.g., to the Gaudin mod8]. An
close to the Wigner surmise for the bottom of the spectrunimportant property of this model is that its statistical proper-
to a distribution which(i) seems to be stable with respect to ties can be computed analytically for any form of two-body
increasing energy, andi) is close to the semi-Poisson dis- potential V(x) and anyh [10,11). For the natural choice
tribution given by Eq.(1). V(x) = —log|x andh=1 (it is this model we called the semi-
In Fig. 2 we plot the difference between the cumulativePoisson statistigsone finds that in the larg&l limit the
spacing distribution for all 20 000 levels except the first 5000distribution ofn nearest neighbors is
for triangular billiards with differenh and the semi-Poisson nBiD)
distribution (1). On analyzing these and other results we P(n.s)= (B+1) B+ D~ 1g—(B+D)s
come to the following conclusions: ' r'(n(B+1)) '
(i) Spectral statistics of the above billiards depéimdthe
first approximatioh on one parameteay, which we propose which for =1 andn=1,2 give Eqs(1) and(3). The two-
to call arithmetical genus. For oduit equals the usual geo- point correlation function is given by ER) and the number
metrical genugy of a surface associated with classical mo-variance by
tion on pseudointegrable billiardi6] but for evenn, q
= ¢(n)/2 where¢(n) is the Euler function. The four visible
groups of lines in Fig. Zfrom the top to the bottoincorre-
spond respectively to triangles with=2 (n=5,8,10,12),
with q=3 (n=7,14,18), withgq=4 (n=9,16,20,24,30), and The model with —log|x| interaction between nearest
all the rest. neighbors is extremely simple, has no adjustable parameters
(i) The spectral statistics for triangles witly=2 (excepth), and(i) it exhibits level repulsion as for standard
(n=5,8,10,12) are quite well describéaetter than 10%) by ~ random matrix ensemblep(s) —s? ass—0, (ii) p(s) de-
the semi-Poisson distributidd). We have checked that even creases as exp(\s) for large s with A=pgh+1, (iii)

®)

L 1
ZZ(L)=§+§(l—e’4'—). (6)
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FIG. 3. Cumulative nearest-neighbor distribution for four slices  FIG. 4. Same as in Fig. 3 but for the rough billiard. Inset: small-
of successive 1000 energy levels for the Kepler billiard. Inset:s behavior for the second slice.
smalls behavior for the first slice.
[r(6) —ro|/ry=0.05 for all @ and therr 4 has been calculated
32(L)— xL whenL— with y=1/A [23]. Itis this type of ~ from the condition that the surface of the resulting figure
feature that one requires for the critical statistics of theequals 4r.
Anderson model at the MIT poirsee[12] and references In Fig. 4 we present the result of a numerical calculation
therein. of the first 500 energy levels divided into four slices, 1-200,
We found several other dynamical models where interme100-300, 200-400 and 300-500, averaged over 40 configura-
diate spectral statistics well described by the above semiions (in total, 20 000 eigenvalugsin this case one observes
Poisson distribution have been observed. In these cases thetransition from the Poisson distribution to the GOE distri-
intermediate statistics are not the limiting distribution, asbution(as it should bg but in between there is an interval of
seems to be the case for pseudointegrable billiards, but rathenergy where the resulting distribution is quite close to the
a transient phenomenon. The first modehich we call the semi-Poisson onél). Intermediate statistics quite well de-
Kepler billiard) was proposed ifil3] and consists of a rect- scribed by Eqs(1) and(2) were also observed in nonhydro-
angular billiard with a Yukawa-type potential, genic atoms in external field§15] and in the three-
dimensional Anderson model with special boundary
7) conditions at the transition poifi6].
r’ The above collection of numerical results suggests that a
] o new type of spacing distribution, which in the simplest cases
where r is the distance from a certain point inside thejg well approximated by Eq(1), has a general significance.
rectangle(usually in the centgr The characteristic feature of this distribution is a linear level
We have numerically computed 4000 energy levels of thgepulsion and exponential falloff at large spacings. Though
Kepler billiard with sidesa=4 and b= imposing the degree of universality of this distribution is not yet clear
the boundary conditionsj(x+a,y) =exp(é)y(xy) and it is found for many systems.
P(x,y+b)=exp(e)yxy) with ¢;=(\5-1)7/2 and ¢, The common origin of this kind of intermediate statistics
=1/4. The result forh=8, k=8 is presented in Fig. 3. appears to be connected with traulti)fractal character of
Though with increasing energy the level statistic of this bil-typical wave functions either in the coordinate spéswith
liard has to tend to the Poisson distributiph3], for low the Anderson mode]5]) or in the reciprocal spacéas it
energies the nearest-neighbor distribution is quite close tgeems to be the case for above-mentioned dynamical sys-
the semi-Poisson distribution in E€L). tems. The complete theory of such intermediate statistics is
We have also considered the rough billiard discussed itill to be developed. Though there exist a few standard mod-
[14], which is a small deformation of a circular billiard. In els of crossover between the Poisson and RME statistics
polar coordinates its boundary is defined by [17-19, we have checked numerically that none of them is
N capable of detailed description of intermediate statistics dis-
_ . cussed in this paper. The main reason for it is related to the
r)=ro 1+n§2 [ancodnd) +bysinn)] |, (8) results of Ref[20], where it was proved that fractal proper-
ties of wave functions quite naturally lead @ small cor-
whererg, a,, andb, are constants. We chosg andb, at relations between levels with different energissnply be-
random with uniform distribution in the intervdl—c,c]. cause these wave functions “live” on different fractadmnd
The value ofc has been fixed by the requirement that(b) strong correlations between levels with nearby energies.

—KI

V(r)=\
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This peculiar behavior of wave function overlap is com-which is different from the GOE predictiorRSCH(¢)
pletely absent in the above-mentioned models but is inherent, (72/6) e~ 1.64e.
in plasma models with screened Coulomb interactie The matrix model discussed above is closely related to a
SRPM discussed above or the Gaudin md@#), which we  singular billiard proposed if21]. The same method can also
think are adequate for analytical description of intermediatg,g applied to the Bohr-Mottelson mod@2].
statistics. To summarize, we have demonstrated numerically that a
, Another class of quels that ,ha32 analogous featres g, q| spacing distribution, which is well approximated by Eq.
W|thoutd frac}alnpropeLrtles and W_'éE /;-h_(’ Nl) can befc?]n— (1), occurs for quite different dynamical systeifas least in
fstructa a_s anwf't tet ushcon5| er tmﬁm).(g e certain energy ranggsand thus seems to have a general
dogrr:: ra%;r?]n né?'abrlneg, Vx-fgﬁﬁfn (?rsetzr'?ut;? ge;n eee?;/n' character(connected probably with the fractal nature of
varie uni Yy distribu tween! eigenfunctiong5,12]). This conjecture is supported by the
andw andty, 'S"’?f'xe,ﬁ‘ vector. Eigenvaluds of this matr2|x analogy between dynamical and disordered systems. We
obey the_ equatlonZn:_lrn/(E—en)z 1, wherer,=|t,*. have also developed a one-dimensional gas model with
The d_en5|ty of these eigenvalues can be transformed to tn?earest-neighbor interaction that leads to Has.and (2).
following form: Finally, we have demonstrated analytically that certain ma-
da N ; N ; trix models also lead to similar statistics.
p(E)= f Z_e—iaz E__”z 11 ex;{ i E—m ) Note addedWhen this paper had. been_ completed we be-
™ n=1 (E—en) m=1 €m came aware that A. Pandg®3] had investigated the model

i i , , equivalent to our SRPM in the framework of band random
As eache, is an independent random variable this expres{y,atrix theory and Brownian motion.

sion permits the explicit computation of the correlation func-

tions R(Eq,....E) ={p(E1)---p(Ey)), where(:--) denotes We thank O. Bohigas, D. Delande, and G. Montambaux
the mean value over ad,. We state here only the behavior for stimulating discussions. U.G. acknowledges financial
of the two-point correlation function when,=r in the limit ~ support from the ‘Deutscher Akademischer Austauschdienst
N—o at small e=E,—E;, Ry(€)—(mV3/2)e~2.72, and thanks the IPN Orsay for kind hospitality.
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